Metamath Proof Explorer


Theorem mpoeq3dva

Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013)

Ref Expression
Hypothesis mpoeq3dva.1 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝐶 = 𝐷 )
Assertion mpoeq3dva ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpoeq3dva.1 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝐶 = 𝐷 )
2 1 3expb ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶 = 𝐷 )
3 2 eqeq2d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑧 = 𝐶𝑧 = 𝐷 ) )
4 3 pm5.32da ( 𝜑 → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐷 ) ) )
5 4 oprabbidv ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐷 ) } )
6 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
7 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐷 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐷 ) }
8 5 6 7 3eqtr4g ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 ) )