Metamath Proof Explorer


Theorem ringcld

Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses ringcld.b 𝐵 = ( Base ‘ 𝑅 )
ringcld.t · = ( .r𝑅 )
ringcld.r ( 𝜑𝑅 ∈ Ring )
ringcld.x ( 𝜑𝑋𝐵 )
ringcld.y ( 𝜑𝑌𝐵 )
Assertion ringcld ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ringcld.b 𝐵 = ( Base ‘ 𝑅 )
2 ringcld.t · = ( .r𝑅 )
3 ringcld.r ( 𝜑𝑅 ∈ Ring )
4 ringcld.x ( 𝜑𝑋𝐵 )
5 ringcld.y ( 𝜑𝑌𝐵 )
6 1 2 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 )
7 3 4 5 6 syl3anc ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 )