Metamath Proof Explorer


Theorem ringcld

Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses ringcld.b
|- B = ( Base ` R )
ringcld.t
|- .x. = ( .r ` R )
ringcld.r
|- ( ph -> R e. Ring )
ringcld.x
|- ( ph -> X e. B )
ringcld.y
|- ( ph -> Y e. B )
Assertion ringcld
|- ( ph -> ( X .x. Y ) e. B )

Proof

Step Hyp Ref Expression
1 ringcld.b
 |-  B = ( Base ` R )
2 ringcld.t
 |-  .x. = ( .r ` R )
3 ringcld.r
 |-  ( ph -> R e. Ring )
4 ringcld.x
 |-  ( ph -> X e. B )
5 ringcld.y
 |-  ( ph -> Y e. B )
6 1 2 ringcl
 |-  ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( X .x. Y ) e. B )