Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcld.b | |- B = ( Base ` R ) |
|
ringcld.t | |- .x. = ( .r ` R ) |
||
ringcld.r | |- ( ph -> R e. Ring ) |
||
ringcld.x | |- ( ph -> X e. B ) |
||
ringcld.y | |- ( ph -> Y e. B ) |
||
Assertion | ringcld | |- ( ph -> ( X .x. Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcld.b | |- B = ( Base ` R ) |
|
2 | ringcld.t | |- .x. = ( .r ` R ) |
|
3 | ringcld.r | |- ( ph -> R e. Ring ) |
|
4 | ringcld.x | |- ( ph -> X e. B ) |
|
5 | ringcld.y | |- ( ph -> Y e. B ) |
|
6 | 1 2 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .x. Y ) e. B ) |