Metamath Proof Explorer


Theorem ringcld

Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses ringcld.b B = Base R
ringcld.t · ˙ = R
ringcld.r φ R Ring
ringcld.x φ X B
ringcld.y φ Y B
Assertion ringcld φ X · ˙ Y B

Proof

Step Hyp Ref Expression
1 ringcld.b B = Base R
2 ringcld.t · ˙ = R
3 ringcld.r φ R Ring
4 ringcld.x φ X B
5 ringcld.y φ Y B
6 1 2 ringcl R Ring X B Y B X · ˙ Y B
7 3 4 5 6 syl3anc φ X · ˙ Y B