Metamath Proof Explorer


Theorem ringassd

Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringassd.b 𝐵 = ( Base ‘ 𝑅 )
ringassd.t · = ( .r𝑅 )
ringassd.r ( 𝜑𝑅 ∈ Ring )
ringassd.x ( 𝜑𝑋𝐵 )
ringassd.y ( 𝜑𝑌𝐵 )
ringassd.z ( 𝜑𝑍𝐵 )
Assertion ringassd ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 ringassd.b 𝐵 = ( Base ‘ 𝑅 )
2 ringassd.t · = ( .r𝑅 )
3 ringassd.r ( 𝜑𝑅 ∈ Ring )
4 ringassd.x ( 𝜑𝑋𝐵 )
5 ringassd.y ( 𝜑𝑌𝐵 )
6 ringassd.z ( 𝜑𝑍𝐵 )
7 1 2 ringass ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) )
8 3 4 5 6 7 syl13anc ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) )