Metamath Proof Explorer
Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ringassd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringassd.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
ringassd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringassd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
ringassd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
ringassd.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
Assertion |
ringassd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringassd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringassd.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringassd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
ringassd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ringassd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
ringassd.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
1 2
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |
8 |
3 4 5 6 7
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · 𝑍 ) = ( 𝑋 · ( 𝑌 · 𝑍 ) ) ) |