Metamath Proof Explorer
Description: The unit element of a ring is a left multiplicative identity.
(Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ringlidmd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringlidmd.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
ringlidmd.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
|
ringlidmd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringlidmd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
Assertion |
ringlidmd |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringlidmd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringlidmd.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringlidmd.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
ringlidmd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringlidmd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
7 |
4 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |