Description: The unit element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringlidmd.b | |- B = ( Base ` R ) |
|
ringlidmd.t | |- .x. = ( .r ` R ) |
||
ringlidmd.u | |- .1. = ( 1r ` R ) |
||
ringlidmd.r | |- ( ph -> R e. Ring ) |
||
ringlidmd.x | |- ( ph -> X e. B ) |
||
Assertion | ringlidmd | |- ( ph -> ( .1. .x. X ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlidmd.b | |- B = ( Base ` R ) |
|
2 | ringlidmd.t | |- .x. = ( .r ` R ) |
|
3 | ringlidmd.u | |- .1. = ( 1r ` R ) |
|
4 | ringlidmd.r | |- ( ph -> R e. Ring ) |
|
5 | ringlidmd.x | |- ( ph -> X e. B ) |
|
6 | 1 2 3 | ringlidm | |- ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X ) |
7 | 4 5 6 | syl2anc | |- ( ph -> ( .1. .x. X ) = X ) |