Metamath Proof Explorer


Theorem ringlidmd

Description: The unit element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringlidmd.b
|- B = ( Base ` R )
ringlidmd.t
|- .x. = ( .r ` R )
ringlidmd.u
|- .1. = ( 1r ` R )
ringlidmd.r
|- ( ph -> R e. Ring )
ringlidmd.x
|- ( ph -> X e. B )
Assertion ringlidmd
|- ( ph -> ( .1. .x. X ) = X )

Proof

Step Hyp Ref Expression
1 ringlidmd.b
 |-  B = ( Base ` R )
2 ringlidmd.t
 |-  .x. = ( .r ` R )
3 ringlidmd.u
 |-  .1. = ( 1r ` R )
4 ringlidmd.r
 |-  ( ph -> R e. Ring )
5 ringlidmd.x
 |-  ( ph -> X e. B )
6 1 2 3 ringlidm
 |-  ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X )
7 4 5 6 syl2anc
 |-  ( ph -> ( .1. .x. X ) = X )