Metamath Proof Explorer


Theorem ringridmd

Description: The unit element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringridmd.b
|- B = ( Base ` R )
ringridmd.t
|- .x. = ( .r ` R )
ringridmd.u
|- .1. = ( 1r ` R )
ringridmd.r
|- ( ph -> R e. Ring )
ringridmd.x
|- ( ph -> X e. B )
Assertion ringridmd
|- ( ph -> ( X .x. .1. ) = X )

Proof

Step Hyp Ref Expression
1 ringridmd.b
 |-  B = ( Base ` R )
2 ringridmd.t
 |-  .x. = ( .r ` R )
3 ringridmd.u
 |-  .1. = ( 1r ` R )
4 ringridmd.r
 |-  ( ph -> R e. Ring )
5 ringridmd.x
 |-  ( ph -> X e. B )
6 1 2 3 ringridm
 |-  ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X )
7 4 5 6 syl2anc
 |-  ( ph -> ( X .x. .1. ) = X )