Metamath Proof Explorer


Theorem ringridmd

Description: The unity element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringlidmd.b B=BaseR
ringlidmd.t ·˙=R
ringlidmd.u 1˙=1R
ringlidmd.r φRRing
ringlidmd.x φXB
Assertion ringridmd φX·˙1˙=X

Proof

Step Hyp Ref Expression
1 ringlidmd.b B=BaseR
2 ringlidmd.t ·˙=R
3 ringlidmd.u 1˙=1R
4 ringlidmd.r φRRing
5 ringlidmd.x φXB
6 1 2 3 ringridm RRingXBX·˙1˙=X
7 4 5 6 syl2anc φX·˙1˙=X