Metamath Proof Explorer


Theorem ringridmd

Description: The unit element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringridmd.b B = Base R
ringridmd.t · ˙ = R
ringridmd.u 1 ˙ = 1 R
ringridmd.r φ R Ring
ringridmd.x φ X B
Assertion ringridmd φ X · ˙ 1 ˙ = X

Proof

Step Hyp Ref Expression
1 ringridmd.b B = Base R
2 ringridmd.t · ˙ = R
3 ringridmd.u 1 ˙ = 1 R
4 ringridmd.r φ R Ring
5 ringridmd.x φ X B
6 1 2 3 ringridm R Ring X B X · ˙ 1 ˙ = X
7 4 5 6 syl2anc φ X · ˙ 1 ˙ = X