Metamath Proof Explorer


Theorem ringlidmd

Description: The unit element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringlidmd.b B = Base R
ringlidmd.t · ˙ = R
ringlidmd.u 1 ˙ = 1 R
ringlidmd.r φ R Ring
ringlidmd.x φ X B
Assertion ringlidmd φ 1 ˙ · ˙ X = X

Proof

Step Hyp Ref Expression
1 ringlidmd.b B = Base R
2 ringlidmd.t · ˙ = R
3 ringlidmd.u 1 ˙ = 1 R
4 ringlidmd.r φ R Ring
5 ringlidmd.x φ X B
6 1 2 3 ringlidm R Ring X B 1 ˙ · ˙ X = X
7 4 5 6 syl2anc φ 1 ˙ · ˙ X = X