Metamath Proof Explorer


Theorem ringassd

Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses ringassd.b
|- B = ( Base ` R )
ringassd.t
|- .x. = ( .r ` R )
ringassd.r
|- ( ph -> R e. Ring )
ringassd.x
|- ( ph -> X e. B )
ringassd.y
|- ( ph -> Y e. B )
ringassd.z
|- ( ph -> Z e. B )
Assertion ringassd
|- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) )

Proof

Step Hyp Ref Expression
1 ringassd.b
 |-  B = ( Base ` R )
2 ringassd.t
 |-  .x. = ( .r ` R )
3 ringassd.r
 |-  ( ph -> R e. Ring )
4 ringassd.x
 |-  ( ph -> X e. B )
5 ringassd.y
 |-  ( ph -> Y e. B )
6 ringassd.z
 |-  ( ph -> Z e. B )
7 1 2 ringass
 |-  ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) )
8 3 4 5 6 7 syl13anc
 |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) )