Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringassd.b | |- B = ( Base ` R ) |
|
ringassd.t | |- .x. = ( .r ` R ) |
||
ringassd.r | |- ( ph -> R e. Ring ) |
||
ringassd.x | |- ( ph -> X e. B ) |
||
ringassd.y | |- ( ph -> Y e. B ) |
||
ringassd.z | |- ( ph -> Z e. B ) |
||
Assertion | ringassd | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringassd.b | |- B = ( Base ` R ) |
|
2 | ringassd.t | |- .x. = ( .r ` R ) |
|
3 | ringassd.r | |- ( ph -> R e. Ring ) |
|
4 | ringassd.x | |- ( ph -> X e. B ) |
|
5 | ringassd.y | |- ( ph -> Y e. B ) |
|
6 | ringassd.z | |- ( ph -> Z e. B ) |
|
7 | 1 2 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
8 | 3 4 5 6 7 | syl13anc | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |