Metamath Proof Explorer
Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ringassd.b |
|
|
|
ringassd.t |
|
|
|
ringassd.r |
|
|
|
ringassd.x |
|
|
|
ringassd.y |
|
|
|
ringassd.z |
|
|
Assertion |
ringassd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringassd.b |
|
| 2 |
|
ringassd.t |
|
| 3 |
|
ringassd.r |
|
| 4 |
|
ringassd.x |
|
| 5 |
|
ringassd.y |
|
| 6 |
|
ringassd.z |
|
| 7 |
1 2
|
ringass |
|
| 8 |
3 4 5 6 7
|
syl13anc |
|