Metamath Proof Explorer
Description: Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ringassd.b |
|
|
|
ringassd.t |
|
|
|
ringassd.r |
|
|
|
ringassd.x |
|
|
|
ringassd.y |
|
|
|
ringassd.z |
|
|
Assertion |
ringassd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringassd.b |
|
2 |
|
ringassd.t |
|
3 |
|
ringassd.r |
|
4 |
|
ringassd.x |
|
5 |
|
ringassd.y |
|
6 |
|
ringassd.z |
|
7 |
1 2
|
ringass |
|
8 |
3 4 5 6 7
|
syl13anc |
|