Metamath Proof Explorer


Theorem difsnid

Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006)

Ref Expression
Assertion difsnid BAABB=A

Proof

Step Hyp Ref Expression
1 snssi BABA
2 undifr BAABB=A
3 1 2 sylib BAABB=A