Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsumunsnd  
				
		 
		
			
		 
		Description:   Append an element to a finite group sum.  (Contributed by Mario
       Carneiro , 19-Dec-2014)   (Revised by AV , 2-Jan-2019)   (Proof shortened by AV , 11-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsumunsnd.b   ⊢   B  =  Base  G      
					 
					
						gsumunsnd.p   ⊢   +  ˙ =  +  G      
					 
					
						gsumunsnd.g    ⊢   φ   →   G  ∈  CMnd         
					 
					
						gsumunsnd.a    ⊢   φ   →   A  ∈  Fin         
					 
					
						gsumunsnd.f    ⊢    φ   ∧   k  ∈  A     →   X  ∈  B         
					 
					
						gsumunsnd.m    ⊢   φ   →   M  ∈  V         
					 
					
						gsumunsnd.d    ⊢   φ   →   ¬   M  ∈  A           
					 
					
						gsumunsnd.y    ⊢   φ   →   Y  ∈  B         
					 
					
						gsumunsnd.s    ⊢    φ   ∧   k  =  M     →   X  =  Y         
					 
				
					Assertion 
					gsumunsnd    ⊢   φ   →   ∑  G  k  ∈   A  ∪   M       X =  ∑  G  k  ∈  A   X +  ˙ Y        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsumunsnd.b  ⊢   B  =  Base  G      
						
							2 
								
							 
							gsumunsnd.p  ⊢   +  ˙ =  +  G      
						
							3 
								
							 
							gsumunsnd.g   ⊢   φ   →   G  ∈  CMnd         
						
							4 
								
							 
							gsumunsnd.a   ⊢   φ   →   A  ∈  Fin         
						
							5 
								
							 
							gsumunsnd.f   ⊢    φ   ∧   k  ∈  A     →   X  ∈  B         
						
							6 
								
							 
							gsumunsnd.m   ⊢   φ   →   M  ∈  V         
						
							7 
								
							 
							gsumunsnd.d   ⊢   φ   →   ¬   M  ∈  A           
						
							8 
								
							 
							gsumunsnd.y   ⊢   φ   →   Y  ∈  B         
						
							9 
								
							 
							gsumunsnd.s   ⊢    φ   ∧   k  =  M     →   X  =  Y         
						
							10 
								
							 
							nfcv  ⊢    Ⅎ   _  k  Y       
						
							11 
								1  2  3  4  5  6  7  8  9  10 
							 
							gsumunsnfd   ⊢   φ   →   ∑  G  k  ∈   A  ∪   M       X =  ∑  G  k  ∈  A   X +  ˙ Y