Metamath Proof Explorer


Theorem gsumunsnf

Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnf.0 _kY
gsumunsnf.b B=BaseG
gsumunsnf.p +˙=+G
gsumunsnf.g φGCMnd
gsumunsnf.a φAFin
gsumunsnf.f φkAXB
gsumunsnf.m φMV
gsumunsnf.d φ¬MA
gsumunsnf.y φYB
gsumunsnf.s k=MX=Y
Assertion gsumunsnf φGkAMX=GkAX+˙Y

Proof

Step Hyp Ref Expression
1 gsumunsnf.0 _kY
2 gsumunsnf.b B=BaseG
3 gsumunsnf.p +˙=+G
4 gsumunsnf.g φGCMnd
5 gsumunsnf.a φAFin
6 gsumunsnf.f φkAXB
7 gsumunsnf.m φMV
8 gsumunsnf.d φ¬MA
9 gsumunsnf.y φYB
10 gsumunsnf.s k=MX=Y
11 10 adantl φk=MX=Y
12 2 3 4 5 6 7 8 9 11 1 gsumunsnfd φGkAMX=GkAX+˙Y