Metamath Proof Explorer


Theorem gsumunsnf

Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnf.0
|- F/_ k Y
gsumunsnf.b
|- B = ( Base ` G )
gsumunsnf.p
|- .+ = ( +g ` G )
gsumunsnf.g
|- ( ph -> G e. CMnd )
gsumunsnf.a
|- ( ph -> A e. Fin )
gsumunsnf.f
|- ( ( ph /\ k e. A ) -> X e. B )
gsumunsnf.m
|- ( ph -> M e. V )
gsumunsnf.d
|- ( ph -> -. M e. A )
gsumunsnf.y
|- ( ph -> Y e. B )
gsumunsnf.s
|- ( k = M -> X = Y )
Assertion gsumunsnf
|- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )

Proof

Step Hyp Ref Expression
1 gsumunsnf.0
 |-  F/_ k Y
2 gsumunsnf.b
 |-  B = ( Base ` G )
3 gsumunsnf.p
 |-  .+ = ( +g ` G )
4 gsumunsnf.g
 |-  ( ph -> G e. CMnd )
5 gsumunsnf.a
 |-  ( ph -> A e. Fin )
6 gsumunsnf.f
 |-  ( ( ph /\ k e. A ) -> X e. B )
7 gsumunsnf.m
 |-  ( ph -> M e. V )
8 gsumunsnf.d
 |-  ( ph -> -. M e. A )
9 gsumunsnf.y
 |-  ( ph -> Y e. B )
10 gsumunsnf.s
 |-  ( k = M -> X = Y )
11 10 adantl
 |-  ( ( ph /\ k = M ) -> X = Y )
12 2 3 4 5 6 7 8 9 11 1 gsumunsnfd
 |-  ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )