Metamath Proof Explorer


Theorem gsumunsn

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)

Ref Expression
Hypotheses gsumunsn.b
|- B = ( Base ` G )
gsumunsn.p
|- .+ = ( +g ` G )
gsumunsn.g
|- ( ph -> G e. CMnd )
gsumunsn.a
|- ( ph -> A e. Fin )
gsumunsn.f
|- ( ( ph /\ k e. A ) -> X e. B )
gsumunsn.m
|- ( ph -> M e. V )
gsumunsn.d
|- ( ph -> -. M e. A )
gsumunsn.y
|- ( ph -> Y e. B )
gsumunsn.s
|- ( k = M -> X = Y )
Assertion gsumunsn
|- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )

Proof

Step Hyp Ref Expression
1 gsumunsn.b
 |-  B = ( Base ` G )
2 gsumunsn.p
 |-  .+ = ( +g ` G )
3 gsumunsn.g
 |-  ( ph -> G e. CMnd )
4 gsumunsn.a
 |-  ( ph -> A e. Fin )
5 gsumunsn.f
 |-  ( ( ph /\ k e. A ) -> X e. B )
6 gsumunsn.m
 |-  ( ph -> M e. V )
7 gsumunsn.d
 |-  ( ph -> -. M e. A )
8 gsumunsn.y
 |-  ( ph -> Y e. B )
9 gsumunsn.s
 |-  ( k = M -> X = Y )
10 9 adantl
 |-  ( ( ph /\ k = M ) -> X = Y )
11 1 2 3 4 5 6 7 8 10 gsumunsnd
 |-  ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )