Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumunsn.b | |- B = ( Base ` G ) |
|
| gsumunsn.p | |- .+ = ( +g ` G ) |
||
| gsumunsn.g | |- ( ph -> G e. CMnd ) |
||
| gsumunsn.a | |- ( ph -> A e. Fin ) |
||
| gsumunsn.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsumunsn.m | |- ( ph -> M e. V ) |
||
| gsumunsn.d | |- ( ph -> -. M e. A ) |
||
| gsumunsn.y | |- ( ph -> Y e. B ) |
||
| gsumunsn.s | |- ( k = M -> X = Y ) |
||
| Assertion | gsumunsn | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumunsn.b | |- B = ( Base ` G ) |
|
| 2 | gsumunsn.p | |- .+ = ( +g ` G ) |
|
| 3 | gsumunsn.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsumunsn.a | |- ( ph -> A e. Fin ) |
|
| 5 | gsumunsn.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 6 | gsumunsn.m | |- ( ph -> M e. V ) |
|
| 7 | gsumunsn.d | |- ( ph -> -. M e. A ) |
|
| 8 | gsumunsn.y | |- ( ph -> Y e. B ) |
|
| 9 | gsumunsn.s | |- ( k = M -> X = Y ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ k = M ) -> X = Y ) |
| 11 | 1 2 3 4 5 6 7 8 10 | gsumunsnd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |