Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumunsn.b | |- B = ( Base ` G ) |
|
gsumunsn.p | |- .+ = ( +g ` G ) |
||
gsumunsn.g | |- ( ph -> G e. CMnd ) |
||
gsumunsn.a | |- ( ph -> A e. Fin ) |
||
gsumunsn.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
gsumunsn.m | |- ( ph -> M e. V ) |
||
gsumunsn.d | |- ( ph -> -. M e. A ) |
||
gsumunsn.y | |- ( ph -> Y e. B ) |
||
gsumunsn.s | |- ( k = M -> X = Y ) |
||
Assertion | gsumunsn | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsn.b | |- B = ( Base ` G ) |
|
2 | gsumunsn.p | |- .+ = ( +g ` G ) |
|
3 | gsumunsn.g | |- ( ph -> G e. CMnd ) |
|
4 | gsumunsn.a | |- ( ph -> A e. Fin ) |
|
5 | gsumunsn.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
6 | gsumunsn.m | |- ( ph -> M e. V ) |
|
7 | gsumunsn.d | |- ( ph -> -. M e. A ) |
|
8 | gsumunsn.y | |- ( ph -> Y e. B ) |
|
9 | gsumunsn.s | |- ( k = M -> X = Y ) |
|
10 | 9 | adantl | |- ( ( ph /\ k = M ) -> X = Y ) |
11 | 1 2 3 4 5 6 7 8 10 | gsumunsnd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |