Metamath Proof Explorer


Theorem gsumunsn

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)

Ref Expression
Hypotheses gsumunsn.b B=BaseG
gsumunsn.p +˙=+G
gsumunsn.g φGCMnd
gsumunsn.a φAFin
gsumunsn.f φkAXB
gsumunsn.m φMV
gsumunsn.d φ¬MA
gsumunsn.y φYB
gsumunsn.s k=MX=Y
Assertion gsumunsn φGkAMX=GkAX+˙Y

Proof

Step Hyp Ref Expression
1 gsumunsn.b B=BaseG
2 gsumunsn.p +˙=+G
3 gsumunsn.g φGCMnd
4 gsumunsn.a φAFin
5 gsumunsn.f φkAXB
6 gsumunsn.m φMV
7 gsumunsn.d φ¬MA
8 gsumunsn.y φYB
9 gsumunsn.s k=MX=Y
10 9 adantl φk=MX=Y
11 1 2 3 4 5 6 7 8 10 gsumunsnd φGkAMX=GkAX+˙Y