Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019) (Revised by AV, 28-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumdifsnd.b | |
|
gsumdifsnd.p | |
||
gsumdifsnd.g | |
||
gsumdifsnd.a | |
||
gsumdifsnd.f | |
||
gsumdifsnd.e | |
||
gsumdifsnd.m | |
||
gsumdifsnd.y | |
||
gsumdifsnd.s | |
||
Assertion | gsumdifsnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumdifsnd.b | |
|
2 | gsumdifsnd.p | |
|
3 | gsumdifsnd.g | |
|
4 | gsumdifsnd.a | |
|
5 | gsumdifsnd.f | |
|
6 | gsumdifsnd.e | |
|
7 | gsumdifsnd.m | |
|
8 | gsumdifsnd.y | |
|
9 | gsumdifsnd.s | |
|
10 | eqid | |
|
11 | 7 | snssd | |
12 | difin2 | |
|
13 | 11 12 | syl | |
14 | difid | |
|
15 | 13 14 | eqtr3di | |
16 | difsnid | |
|
17 | 7 16 | syl | |
18 | 17 | eqcomd | |
19 | 1 10 2 3 4 6 5 15 18 | gsumsplit2 | |
20 | cmnmnd | |
|
21 | 3 20 | syl | |
22 | 1 21 7 8 9 | gsumsnd | |
23 | 22 | oveq2d | |
24 | 19 23 | eqtrd | |