Metamath Proof Explorer


Theorem gsumpt

Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumpt.b B=BaseG
gsumpt.z 0˙=0G
gsumpt.g φGMnd
gsumpt.a φAV
gsumpt.x φXA
gsumpt.f φF:AB
gsumpt.s φFsupp0˙X
Assertion gsumpt φGF=FX

Proof

Step Hyp Ref Expression
1 gsumpt.b B=BaseG
2 gsumpt.z 0˙=0G
3 gsumpt.g φGMnd
4 gsumpt.a φAV
5 gsumpt.x φXA
6 gsumpt.f φF:AB
7 gsumpt.s φFsupp0˙X
8 5 snssd φXA
9 6 8 feqresmpt φFX=aXFa
10 9 oveq2d φGFX=GaXFa
11 eqid CntzG=CntzG
12 6 5 ffvelcdmd φFXB
13 eqidd φFX+GFX=FX+GFX
14 eqid +G=+G
15 1 14 11 elcntzsn FXBFXCntzGFXFXBFX+GFX=FX+GFX
16 12 15 syl φFXCntzGFXFXBFX+GFX=FX+GFX
17 12 13 16 mpbir2and φFXCntzGFX
18 17 snssd φFXCntzGFX
19 eqid mrClsSubMndG=mrClsSubMndG
20 eqid G𝑠mrClsSubMndGFX=G𝑠mrClsSubMndGFX
21 11 19 20 cntzspan GMndFXCntzGFXG𝑠mrClsSubMndGFXCMnd
22 3 18 21 syl2anc φG𝑠mrClsSubMndGFXCMnd
23 1 submacs GMndSubMndGACSB
24 acsmre SubMndGACSBSubMndGMooreB
25 3 23 24 3syl φSubMndGMooreB
26 12 snssd φFXB
27 19 mrccl SubMndGMooreBFXBmrClsSubMndGFXSubMndG
28 25 26 27 syl2anc φmrClsSubMndGFXSubMndG
29 20 11 submcmn2 mrClsSubMndGFXSubMndGG𝑠mrClsSubMndGFXCMndmrClsSubMndGFXCntzGmrClsSubMndGFX
30 28 29 syl φG𝑠mrClsSubMndGFXCMndmrClsSubMndGFXCntzGmrClsSubMndGFX
31 22 30 mpbid φmrClsSubMndGFXCntzGmrClsSubMndGFX
32 6 ffnd φFFnA
33 simpr φaAa=Xa=X
34 33 fveq2d φaAa=XFa=FX
35 25 19 26 mrcssidd φFXmrClsSubMndGFX
36 fvex FXV
37 36 snss FXmrClsSubMndGFXFXmrClsSubMndGFX
38 35 37 sylibr φFXmrClsSubMndGFX
39 38 ad2antrr φaAa=XFXmrClsSubMndGFX
40 34 39 eqeltrd φaAa=XFamrClsSubMndGFX
41 eldifsn aAXaAaX
42 2 fvexi 0˙V
43 42 a1i φ0˙V
44 6 7 4 43 suppssr φaAXFa=0˙
45 41 44 sylan2br φaAaXFa=0˙
46 2 subm0cl mrClsSubMndGFXSubMndG0˙mrClsSubMndGFX
47 28 46 syl φ0˙mrClsSubMndGFX
48 47 adantr φaAaX0˙mrClsSubMndGFX
49 45 48 eqeltrd φaAaXFamrClsSubMndGFX
50 49 anassrs φaAaXFamrClsSubMndGFX
51 40 50 pm2.61dane φaAFamrClsSubMndGFX
52 51 ralrimiva φaAFamrClsSubMndGFX
53 ffnfv F:AmrClsSubMndGFXFFnAaAFamrClsSubMndGFX
54 32 52 53 sylanbrc φF:AmrClsSubMndGFX
55 54 frnd φranFmrClsSubMndGFX
56 11 cntzidss mrClsSubMndGFXCntzGmrClsSubMndGFXranFmrClsSubMndGFXranFCntzGranF
57 31 55 56 syl2anc φranFCntzGranF
58 6 ffund φFunF
59 snfi XFin
60 ssfi XFinFsupp0˙XFsupp0˙Fin
61 59 7 60 sylancr φFsupp0˙Fin
62 6 4 fexd φFV
63 isfsupp FV0˙VfinSupp0˙FFunFFsupp0˙Fin
64 62 43 63 syl2anc φfinSupp0˙FFunFFsupp0˙Fin
65 58 61 64 mpbir2and φfinSupp0˙F
66 1 2 11 3 4 6 57 7 65 gsumzres φGFX=GF
67 fveq2 a=XFa=FX
68 1 67 gsumsn GMndXAFXBGaXFa=FX
69 3 5 12 68 syl3anc φGaXFa=FX
70 10 66 69 3eqtr3d φGF=FX