Metamath Proof Explorer


Theorem mrcssidd

Description: A set is contained in its Moore closure. Deduction form of mrcssid . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrcssidd.1 φAMooreX
mrcssidd.2 N=mrClsA
mrcssidd.3 φUX
Assertion mrcssidd φUNU

Proof

Step Hyp Ref Expression
1 mrcssidd.1 φAMooreX
2 mrcssidd.2 N=mrClsA
3 mrcssidd.3 φUX
4 2 mrcssid AMooreXUXUNU
5 1 3 4 syl2anc φUNU