Metamath Proof Explorer


Theorem mrcssid

Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcssid CMooreXUXUFU

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 ssintub UsC|Us
3 1 mrcval CMooreXUXFU=sC|Us
4 2 3 sseqtrrid CMooreXUXUFU