Metamath Proof Explorer


Theorem ssintub

Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)

Ref Expression
Assertion ssintub A x B | A x

Proof

Step Hyp Ref Expression
1 ssint A x B | A x y x B | A x A y
2 sseq2 x = y A x A y
3 2 elrab y x B | A x y B A y
4 3 simprbi y x B | A x A y
5 1 4 mprgbir A x B | A x