Metamath Proof Explorer


Theorem ssintub

Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)

Ref Expression
Assertion ssintub 𝐴 { 𝑥𝐵𝐴𝑥 }

Proof

Step Hyp Ref Expression
1 ssint ( 𝐴 { 𝑥𝐵𝐴𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥𝐵𝐴𝑥 } 𝐴𝑦 )
2 sseq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
3 2 elrab ( 𝑦 ∈ { 𝑥𝐵𝐴𝑥 } ↔ ( 𝑦𝐵𝐴𝑦 ) )
4 3 simprbi ( 𝑦 ∈ { 𝑥𝐵𝐴𝑥 } → 𝐴𝑦 )
5 1 4 mprgbir 𝐴 { 𝑥𝐵𝐴𝑥 }