Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)
Ref | Expression | ||
---|---|---|---|
Assertion | ssintub | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } 𝐴 ⊆ 𝑦 ) | |
2 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦 ) ) | |
3 | 2 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦 ) ) |
4 | 3 | simprbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝐴 ⊆ 𝑦 ) |
5 | 1 4 | mprgbir | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } |