Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)
Ref | Expression | ||
---|---|---|---|
Assertion | ssintub | |- A C_ |^| { x e. B | A C_ x } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint | |- ( A C_ |^| { x e. B | A C_ x } <-> A. y e. { x e. B | A C_ x } A C_ y ) |
|
2 | sseq2 | |- ( x = y -> ( A C_ x <-> A C_ y ) ) |
|
3 | 2 | elrab | |- ( y e. { x e. B | A C_ x } <-> ( y e. B /\ A C_ y ) ) |
4 | 3 | simprbi | |- ( y e. { x e. B | A C_ x } -> A C_ y ) |
5 | 1 4 | mprgbir | |- A C_ |^| { x e. B | A C_ x } |