Metamath Proof Explorer


Theorem ssintub

Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000)

Ref Expression
Assertion ssintub
|- A C_ |^| { x e. B | A C_ x }

Proof

Step Hyp Ref Expression
1 ssint
 |-  ( A C_ |^| { x e. B | A C_ x } <-> A. y e. { x e. B | A C_ x } A C_ y )
2 sseq2
 |-  ( x = y -> ( A C_ x <-> A C_ y ) )
3 2 elrab
 |-  ( y e. { x e. B | A C_ x } <-> ( y e. B /\ A C_ y ) )
4 3 simprbi
 |-  ( y e. { x e. B | A C_ x } -> A C_ y )
5 1 4 mprgbir
 |-  A C_ |^| { x e. B | A C_ x }