Metamath Proof Explorer


Definition df-cntz

Description: Define thecentralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-cntz Cntz=mVs𝒫BasemxBasem|ysx+my=y+mx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccntz classCntz
1 vm setvarm
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarm
6 5 4 cfv classBasem
7 6 cpw class𝒫Basem
8 vx setvarx
9 vy setvary
10 3 cv setvars
11 8 cv setvarx
12 cplusg class+𝑔
13 5 12 cfv class+m
14 9 cv setvary
15 11 14 13 co classx+my
16 14 11 13 co classy+mx
17 15 16 wceq wffx+my=y+mx
18 17 9 10 wral wffysx+my=y+mx
19 18 8 6 crab classxBasem|ysx+my=y+mx
20 3 7 19 cmpt classs𝒫BasemxBasem|ysx+my=y+mx
21 1 2 20 cmpt classmVs𝒫BasemxBasem|ysx+my=y+mx
22 0 21 wceq wffCntz=mVs𝒫BasemxBasem|ysx+my=y+mx