Metamath Proof Explorer


Theorem submacs

Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypothesis submacs.b B=BaseG
Assertion submacs GMndSubMndGACSB

Proof

Step Hyp Ref Expression
1 submacs.b B=BaseG
2 eqid 0G=0G
3 eqid +G=+G
4 1 2 3 issubm GMndsSubMndGsB0Gsxsysx+Gys
5 velpw s𝒫BsB
6 5 anbi1i s𝒫B0Gsxsysx+GyssB0Gsxsysx+Gys
7 3anass sB0Gsxsysx+GyssB0Gsxsysx+Gys
8 6 7 bitr4i s𝒫B0Gsxsysx+GyssB0Gsxsysx+Gys
9 4 8 bitr4di GMndsSubMndGs𝒫B0Gsxsysx+Gys
10 9 eqabdv GMndSubMndG=s|s𝒫B0Gsxsysx+Gys
11 df-rab s𝒫B|0Gsxsysx+Gys=s|s𝒫B0Gsxsysx+Gys
12 10 11 eqtr4di GMndSubMndG=s𝒫B|0Gsxsysx+Gys
13 inrab s𝒫B|0Gss𝒫B|xsysx+Gys=s𝒫B|0Gsxsysx+Gys
14 1 fvexi BV
15 mreacs BVACSBMoore𝒫B
16 14 15 mp1i GMndACSBMoore𝒫B
17 1 2 mndidcl GMnd0GB
18 acsfn0 BV0GBs𝒫B|0GsACSB
19 14 17 18 sylancr GMnds𝒫B|0GsACSB
20 1 3 mndcl GMndxByBx+GyB
21 20 3expb GMndxByBx+GyB
22 21 ralrimivva GMndxByBx+GyB
23 acsfn2 BVxByBx+GyBs𝒫B|xsysx+GysACSB
24 14 22 23 sylancr GMnds𝒫B|xsysx+GysACSB
25 mreincl ACSBMoore𝒫Bs𝒫B|0GsACSBs𝒫B|xsysx+GysACSBs𝒫B|0Gss𝒫B|xsysx+GysACSB
26 16 19 24 25 syl3anc GMnds𝒫B|0Gss𝒫B|xsysx+GysACSB
27 13 26 eqeltrrid GMnds𝒫B|0Gsxsysx+GysACSB
28 12 27 eqeltrd GMndSubMndGACSB