Metamath Proof Explorer


Theorem inrab

Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006)

Ref Expression
Assertion inrab xA|φxA|ψ=xA|φψ

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 df-rab xA|ψ=x|xAψ
3 1 2 ineq12i xA|φxA|ψ=x|xAφx|xAψ
4 df-rab xA|φψ=x|xAφψ
5 inab x|xAφx|xAψ=x|xAφxAψ
6 anandi xAφψxAφxAψ
7 6 abbii x|xAφψ=x|xAφxAψ
8 5 7 eqtr4i x|xAφx|xAψ=x|xAφψ
9 4 8 eqtr4i xA|φψ=x|xAφx|xAψ
10 3 9 eqtr4i xA|φxA|ψ=xA|φψ