Metamath Proof Explorer


Theorem mreincl

Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion mreincl CMooreXACBCABC

Proof

Step Hyp Ref Expression
1 intprg ACBCAB=AB
2 1 3adant1 CMooreXACBCAB=AB
3 simp1 CMooreXACBCCMooreX
4 prssi ACBCABC
5 4 3adant1 CMooreXACBCABC
6 prnzg ACAB
7 6 3ad2ant2 CMooreXACBCAB
8 mreintcl CMooreXABCABABC
9 3 5 7 8 syl3anc CMooreXACBCABC
10 2 9 eqeltrrd CMooreXACBCABC