Metamath Proof Explorer


Theorem mreintcl

Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion mreintcl CMooreXSCSSC

Proof

Step Hyp Ref Expression
1 elpw2g CMooreXS𝒫CSC
2 1 biimpar CMooreXSCS𝒫C
3 2 3adant3 CMooreXSCSS𝒫C
4 ismre CMooreXC𝒫XXCs𝒫CssC
5 4 simp3bi CMooreXs𝒫CssC
6 5 3ad2ant1 CMooreXSCSs𝒫CssC
7 simp3 CMooreXSCSS
8 neeq1 s=SsS
9 inteq s=Ss=S
10 9 eleq1d s=SsCSC
11 8 10 imbi12d s=SssCSSC
12 11 rspcva S𝒫Cs𝒫CssCSSC
13 12 3impia S𝒫Cs𝒫CssCSSC
14 3 6 7 13 syl3anc CMooreXSCSSC