Metamath Proof Explorer


Theorem ismre

Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion ismre CMooreXC𝒫XXCs𝒫CssC

Proof

Step Hyp Ref Expression
1 elfvex CMooreXXV
2 elex XCXV
3 2 3ad2ant2 C𝒫XXCs𝒫CssCXV
4 pweq x=X𝒫x=𝒫X
5 4 pweqd x=X𝒫𝒫x=𝒫𝒫X
6 eleq1 x=XxcXc
7 6 anbi1d x=Xxcs𝒫csscXcs𝒫cssc
8 5 7 rabeqbidv x=Xc𝒫𝒫x|xcs𝒫cssc=c𝒫𝒫X|Xcs𝒫cssc
9 df-mre Moore=xVc𝒫𝒫x|xcs𝒫cssc
10 vpwex 𝒫xV
11 10 pwex 𝒫𝒫xV
12 11 rabex c𝒫𝒫x|xcs𝒫csscV
13 8 9 12 fvmpt3i XVMooreX=c𝒫𝒫X|Xcs𝒫cssc
14 13 eleq2d XVCMooreXCc𝒫𝒫X|Xcs𝒫cssc
15 eleq2 c=CXcXC
16 pweq c=C𝒫c=𝒫C
17 eleq2 c=CscsC
18 17 imbi2d c=CsscssC
19 16 18 raleqbidv c=Cs𝒫csscs𝒫CssC
20 15 19 anbi12d c=CXcs𝒫csscXCs𝒫CssC
21 20 elrab Cc𝒫𝒫X|Xcs𝒫csscC𝒫𝒫XXCs𝒫CssC
22 21 a1i XVCc𝒫𝒫X|Xcs𝒫csscC𝒫𝒫XXCs𝒫CssC
23 pwexg XV𝒫XV
24 elpw2g 𝒫XVC𝒫𝒫XC𝒫X
25 23 24 syl XVC𝒫𝒫XC𝒫X
26 25 anbi1d XVC𝒫𝒫XXCs𝒫CssCC𝒫XXCs𝒫CssC
27 3anass C𝒫XXCs𝒫CssCC𝒫XXCs𝒫CssC
28 26 27 bitr4di XVC𝒫𝒫XXCs𝒫CssCC𝒫XXCs𝒫CssC
29 14 22 28 3bitrd XVCMooreXC𝒫XXCs𝒫CssC
30 1 3 29 pm5.21nii CMooreXC𝒫XXCs𝒫CssC