Metamath Proof Explorer


Theorem elpw2g

Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 7-Aug-2000)

Ref Expression
Assertion elpw2g BVA𝒫BAB

Proof

Step Hyp Ref Expression
1 elpwi A𝒫BAB
2 ssexg ABBVAV
3 elpwg AVA𝒫BAB
4 3 biimparc ABAVA𝒫B
5 2 4 syldan ABBVA𝒫B
6 5 expcom BVABA𝒫B
7 1 6 impbid2 BVA𝒫BAB