Metamath Proof Explorer


Theorem mndind

Description: Induction in a monoid. In this theorem, ps ( x ) is the "generic" proposition to be be proved (the first four hypotheses tell its values at y, y+z, 0, A respectively). The two induction hypotheses mndind.i1 and mndind.i2 tell that it is true at 0, that if it is true at y then it is true at y+z (provided z is in G ). The hypothesis mndind.k tells that G is generating. (Contributed by SO, 14-Jul-2018)

Ref Expression
Hypotheses mndind.ch x=yψχ
mndind.th x=y+˙zψθ
mndind.ta x=0˙ψτ
mndind.et x=Aψη
mndind.0g 0˙=0M
mndind.pg +˙=+M
mndind.b B=BaseM
mndind.m φMMnd
mndind.g φGB
mndind.k φB=mrClsSubMndMG
mndind.i1 φτ
mndind.i2 φyBzGχθ
mndind.a φAB
Assertion mndind φη

Proof

Step Hyp Ref Expression
1 mndind.ch x=yψχ
2 mndind.th x=y+˙zψθ
3 mndind.ta x=0˙ψτ
4 mndind.et x=Aψη
5 mndind.0g 0˙=0M
6 mndind.pg +˙=+M
7 mndind.b B=BaseM
8 mndind.m φMMnd
9 mndind.g φGB
10 mndind.k φB=mrClsSubMndMG
11 mndind.i1 φτ
12 mndind.i2 φyBzGχθ
13 mndind.a φAB
14 7 5 mndidcl MMnd0˙B
15 8 14 syl φ0˙B
16 3 sbcieg 0˙B[˙0˙/x]˙ψτ
17 15 16 syl φ[˙0˙/x]˙ψτ
18 11 17 mpbird φ[˙0˙/x]˙ψ
19 dfsbcq a=0˙[˙a/x]˙ψ[˙0˙/x]˙ψ
20 oveq1 a=0˙a+˙A=0˙+˙A
21 20 sbceq1d a=0˙[˙a+˙A/x]˙ψ[˙0˙+˙A/x]˙ψ
22 19 21 imbi12d a=0˙[˙a/x]˙ψ[˙a+˙A/x]˙ψ[˙0˙/x]˙ψ[˙0˙+˙A/x]˙ψ
23 7 submacs MMndSubMndMACSB
24 8 23 syl φSubMndMACSB
25 24 acsmred φSubMndMMooreB
26 eleq1w y=ayBaB
27 26 anbi2d y=aφbGyBφbGaB
28 vex yV
29 28 1 sbcie [˙y/x]˙ψχ
30 dfsbcq y=a[˙y/x]˙ψ[˙a/x]˙ψ
31 29 30 bitr3id y=aχ[˙a/x]˙ψ
32 oveq1 y=ay+˙b=a+˙b
33 32 sbceq1d y=a[˙y+˙b/x]˙ψ[˙a+˙b/x]˙ψ
34 31 33 imbi12d y=aχ[˙y+˙b/x]˙ψ[˙a/x]˙ψ[˙a+˙b/x]˙ψ
35 27 34 imbi12d y=aφbGyBχ[˙y+˙b/x]˙ψφbGaB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
36 eleq1w z=bzGbG
37 36 anbi2d z=bφzGφbG
38 37 anbi1d z=bφzGyBφbGyB
39 ovex y+˙zV
40 39 2 sbcie [˙y+˙z/x]˙ψθ
41 oveq2 z=by+˙z=y+˙b
42 41 sbceq1d z=b[˙y+˙z/x]˙ψ[˙y+˙b/x]˙ψ
43 40 42 bitr3id z=bθ[˙y+˙b/x]˙ψ
44 43 imbi2d z=bχθχ[˙y+˙b/x]˙ψ
45 38 44 imbi12d z=bφzGyBχθφbGyBχ[˙y+˙b/x]˙ψ
46 12 ex φyBzGχθ
47 46 3expa φyBzGχθ
48 47 an32s φzGyBχθ
49 45 48 chvarvv φbGyBχ[˙y+˙b/x]˙ψ
50 35 49 chvarvv φbGaB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
51 50 ralrimiva φbGaB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
52 9 51 ssrabdv φGbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
53 7 6 5 mndrid MMndaBa+˙0˙=a
54 8 53 sylan φaBa+˙0˙=a
55 54 sbceq1d φaB[˙a+˙0˙/x]˙ψ[˙a/x]˙ψ
56 55 biimprd φaB[˙a/x]˙ψ[˙a+˙0˙/x]˙ψ
57 56 ralrimiva φaB[˙a/x]˙ψ[˙a+˙0˙/x]˙ψ
58 simprrl φcBdBaB[˙a/x]˙ψ[˙a+˙c/x]˙ψaB[˙a/x]˙ψ[˙a+˙d/x]˙ψaB[˙a/x]˙ψ[˙a+˙c/x]˙ψ
59 8 ad2antrr φcBdBbBMMnd
60 simpr φcBdBbBbB
61 simplrl φcBdBbBcB
62 7 6 mndcl MMndbBcBb+˙cB
63 59 60 61 62 syl3anc φcBdBbBb+˙cB
64 simpr φcBdBbBa=b+˙ca=b+˙c
65 64 sbceq1d φcBdBbBa=b+˙c[˙a/x]˙ψ[˙b+˙c/x]˙ψ
66 oveq1 a=b+˙ca+˙d=b+˙c+˙d
67 simplrr φcBdBbBdB
68 7 6 mndass MMndbBcBdBb+˙c+˙d=b+˙c+˙d
69 59 60 61 67 68 syl13anc φcBdBbBb+˙c+˙d=b+˙c+˙d
70 66 69 sylan9eqr φcBdBbBa=b+˙ca+˙d=b+˙c+˙d
71 70 sbceq1d φcBdBbBa=b+˙c[˙a+˙d/x]˙ψ[˙b+˙c+˙d/x]˙ψ
72 65 71 imbi12d φcBdBbBa=b+˙c[˙a/x]˙ψ[˙a+˙d/x]˙ψ[˙b+˙c/x]˙ψ[˙b+˙c+˙d/x]˙ψ
73 63 72 rspcdv φcBdBbBaB[˙a/x]˙ψ[˙a+˙d/x]˙ψ[˙b+˙c/x]˙ψ[˙b+˙c+˙d/x]˙ψ
74 73 ralrimdva φcBdBaB[˙a/x]˙ψ[˙a+˙d/x]˙ψbB[˙b+˙c/x]˙ψ[˙b+˙c+˙d/x]˙ψ
75 74 impr φcBdBaB[˙a/x]˙ψ[˙a+˙d/x]˙ψbB[˙b+˙c/x]˙ψ[˙b+˙c+˙d/x]˙ψ
76 oveq1 b=ab+˙c=a+˙c
77 76 sbceq1d b=a[˙b+˙c/x]˙ψ[˙a+˙c/x]˙ψ
78 oveq1 b=ab+˙c+˙d=a+˙c+˙d
79 78 sbceq1d b=a[˙b+˙c+˙d/x]˙ψ[˙a+˙c+˙d/x]˙ψ
80 77 79 imbi12d b=a[˙b+˙c/x]˙ψ[˙b+˙c+˙d/x]˙ψ[˙a+˙c/x]˙ψ[˙a+˙c+˙d/x]˙ψ
81 80 cbvralvw bB[˙b+˙c/x]˙ψ[˙b+˙c+˙d/x]˙ψaB[˙a+˙c/x]˙ψ[˙a+˙c+˙d/x]˙ψ
82 75 81 sylib φcBdBaB[˙a/x]˙ψ[˙a+˙d/x]˙ψaB[˙a+˙c/x]˙ψ[˙a+˙c+˙d/x]˙ψ
83 82 adantrrl φcBdBaB[˙a/x]˙ψ[˙a+˙c/x]˙ψaB[˙a/x]˙ψ[˙a+˙d/x]˙ψaB[˙a+˙c/x]˙ψ[˙a+˙c+˙d/x]˙ψ
84 imim1 [˙a/x]˙ψ[˙a+˙c/x]˙ψ[˙a+˙c/x]˙ψ[˙a+˙c+˙d/x]˙ψ[˙a/x]˙ψ[˙a+˙c+˙d/x]˙ψ
85 84 ral2imi aB[˙a/x]˙ψ[˙a+˙c/x]˙ψaB[˙a+˙c/x]˙ψ[˙a+˙c+˙d/x]˙ψaB[˙a/x]˙ψ[˙a+˙c+˙d/x]˙ψ
86 58 83 85 sylc φcBdBaB[˙a/x]˙ψ[˙a+˙c/x]˙ψaB[˙a/x]˙ψ[˙a+˙d/x]˙ψaB[˙a/x]˙ψ[˙a+˙c+˙d/x]˙ψ
87 oveq2 b=0˙a+˙b=a+˙0˙
88 87 sbceq1d b=0˙[˙a+˙b/x]˙ψ[˙a+˙0˙/x]˙ψ
89 88 imbi2d b=0˙[˙a/x]˙ψ[˙a+˙b/x]˙ψ[˙a/x]˙ψ[˙a+˙0˙/x]˙ψ
90 89 ralbidv b=0˙aB[˙a/x]˙ψ[˙a+˙b/x]˙ψaB[˙a/x]˙ψ[˙a+˙0˙/x]˙ψ
91 oveq2 b=ca+˙b=a+˙c
92 91 sbceq1d b=c[˙a+˙b/x]˙ψ[˙a+˙c/x]˙ψ
93 92 imbi2d b=c[˙a/x]˙ψ[˙a+˙b/x]˙ψ[˙a/x]˙ψ[˙a+˙c/x]˙ψ
94 93 ralbidv b=caB[˙a/x]˙ψ[˙a+˙b/x]˙ψaB[˙a/x]˙ψ[˙a+˙c/x]˙ψ
95 oveq2 b=da+˙b=a+˙d
96 95 sbceq1d b=d[˙a+˙b/x]˙ψ[˙a+˙d/x]˙ψ
97 96 imbi2d b=d[˙a/x]˙ψ[˙a+˙b/x]˙ψ[˙a/x]˙ψ[˙a+˙d/x]˙ψ
98 97 ralbidv b=daB[˙a/x]˙ψ[˙a+˙b/x]˙ψaB[˙a/x]˙ψ[˙a+˙d/x]˙ψ
99 oveq2 b=c+˙da+˙b=a+˙c+˙d
100 99 sbceq1d b=c+˙d[˙a+˙b/x]˙ψ[˙a+˙c+˙d/x]˙ψ
101 100 imbi2d b=c+˙d[˙a/x]˙ψ[˙a+˙b/x]˙ψ[˙a/x]˙ψ[˙a+˙c+˙d/x]˙ψ
102 101 ralbidv b=c+˙daB[˙a/x]˙ψ[˙a+˙b/x]˙ψaB[˙a/x]˙ψ[˙a+˙c+˙d/x]˙ψ
103 7 6 5 8 57 86 90 94 98 102 issubmd φbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψSubMndM
104 eqid mrClsSubMndM=mrClsSubMndM
105 104 mrcsscl SubMndMMooreBGbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψSubMndMmrClsSubMndMGbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
106 25 52 103 105 syl3anc φmrClsSubMndMGbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
107 10 106 eqsstrd φBbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
108 107 13 sseldd φAbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψ
109 oveq2 b=Aa+˙b=a+˙A
110 109 sbceq1d b=A[˙a+˙b/x]˙ψ[˙a+˙A/x]˙ψ
111 110 imbi2d b=A[˙a/x]˙ψ[˙a+˙b/x]˙ψ[˙a/x]˙ψ[˙a+˙A/x]˙ψ
112 111 ralbidv b=AaB[˙a/x]˙ψ[˙a+˙b/x]˙ψaB[˙a/x]˙ψ[˙a+˙A/x]˙ψ
113 112 elrab AbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψABaB[˙a/x]˙ψ[˙a+˙A/x]˙ψ
114 113 simprbi AbB|aB[˙a/x]˙ψ[˙a+˙b/x]˙ψaB[˙a/x]˙ψ[˙a+˙A/x]˙ψ
115 108 114 syl φaB[˙a/x]˙ψ[˙a+˙A/x]˙ψ
116 22 115 15 rspcdva φ[˙0˙/x]˙ψ[˙0˙+˙A/x]˙ψ
117 18 116 mpd φ[˙0˙+˙A/x]˙ψ
118 7 6 5 mndlid MMndAB0˙+˙A=A
119 8 13 118 syl2anc φ0˙+˙A=A
120 119 sbceq1d φ[˙0˙+˙A/x]˙ψ[˙A/x]˙ψ
121 4 sbcieg AB[˙A/x]˙ψη
122 13 121 syl φ[˙A/x]˙ψη
123 120 122 bitrd φ[˙0˙+˙A/x]˙ψη
124 117 123 mpbid φη