Description: Induction in a monoid. In this theorem, ps ( x ) is the "generic" proposition to be be proved (the first four hypotheses tell its values at y, y+z, 0, A respectively). The two induction hypotheses mndind.i1 and mndind.i2 tell that it is true at 0, that if it is true at y then it is true at y+z (provided z is in G ). The hypothesis mndind.k tells that G is generating. (Contributed by SO, 14-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndind.ch | |
|
mndind.th | |
||
mndind.ta | |
||
mndind.et | |
||
mndind.0g | |
||
mndind.pg | |
||
mndind.b | |
||
mndind.m | |
||
mndind.g | |
||
mndind.k | |
||
mndind.i1 | |
||
mndind.i2 | |
||
mndind.a | |
||
Assertion | mndind | |