Metamath Proof Explorer


Theorem ssrabdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006)

Ref Expression
Hypotheses ssrabdv.1 φBA
ssrabdv.2 φxBψ
Assertion ssrabdv φBxA|ψ

Proof

Step Hyp Ref Expression
1 ssrabdv.1 φBA
2 ssrabdv.2 φxBψ
3 2 ralrimiva φxBψ
4 ssrab BxA|ψBAxBψ
5 1 3 4 sylanbrc φBxA|ψ