Metamath Proof Explorer


Theorem ssrab

Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssrab BxA|φBAxBφ

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 1 sseq2i BxA|φBx|xAφ
3 ssab Bx|xAφxxBxAφ
4 dfss3 BAxBxA
5 4 anbi1i BAxBφxBxAxBφ
6 r19.26 xBxAφxBxAxBφ
7 df-ral xBxAφxxBxAφ
8 5 6 7 3bitr2ri xxBxAφBAxBφ
9 2 3 8 3bitri BxA|φBAxBφ