| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 2 | 1 | sseq2i | ⊢ ( 𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜑 }  ↔  𝐵  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } ) | 
						
							| 3 |  | ssab | ⊢ ( 𝐵  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 4 |  | dfss3 | ⊢ ( 𝐵  ⊆  𝐴  ↔  ∀ 𝑥  ∈  𝐵 𝑥  ∈  𝐴 ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜑 )  ↔  ( ∀ 𝑥  ∈  𝐵 𝑥  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜑 ) ) | 
						
							| 6 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( ∀ 𝑥  ∈  𝐵 𝑥  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜑 ) ) | 
						
							| 7 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 8 | 5 6 7 | 3bitr2ri | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜑 ) ) | 
						
							| 9 | 2 3 8 | 3bitri | ⊢ ( 𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜑 ) ) |