Metamath Proof Explorer


Theorem sbcieg

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis sbcieg.1 x=Aφψ
Assertion sbcieg AV[˙A/x]˙φψ

Proof

Step Hyp Ref Expression
1 sbcieg.1 x=Aφψ
2 df-sbc [˙A/x]˙φAx|φ
3 1 elabg AVAx|φψ
4 2 3 bitrid AV[˙A/x]˙φψ