Metamath Proof Explorer


Theorem acsfn2

Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn2 X V b X c X E X a 𝒫 X | b a c a E a ACS X

Proof

Step Hyp Ref Expression
1 elpwi a 𝒫 X a X
2 ralss a X b a c a E a b X b a c a E a
3 ralss a X c a b a E a c X c a b a E a
4 r19.21v c a b a E a b a c a E a
5 impexp c a b a E a c a b a E a
6 vex c V
7 vex b V
8 6 7 prss c a b a c b a
9 8 imbi1i c a b a E a c b a E a
10 5 9 bitr3i c a b a E a c b a E a
11 10 ralbii c X c a b a E a c X c b a E a
12 3 4 11 3bitr3g a X b a c a E a c X c b a E a
13 12 ralbidv a X b X b a c a E a b X c X c b a E a
14 2 13 bitrd a X b a c a E a b X c X c b a E a
15 1 14 syl a 𝒫 X b a c a E a b X c X c b a E a
16 15 rabbiia a 𝒫 X | b a c a E a = a 𝒫 X | b X c X c b a E a
17 riinrab 𝒫 X b X a 𝒫 X | c X c b a E a = a 𝒫 X | b X c X c b a E a
18 16 17 eqtr4i a 𝒫 X | b a c a E a = 𝒫 X b X a 𝒫 X | c X c b a E a
19 mreacs X V ACS X Moore 𝒫 X
20 riinrab 𝒫 X c X a 𝒫 X | c b a E a = a 𝒫 X | c X c b a E a
21 19 ad2antrr X V b X c X E X ACS X Moore 𝒫 X
22 simpll X V b X c X E X X V
23 simprr X V b X c X E X E X
24 prssi c X b X c b X
25 24 ancoms b X c X c b X
26 25 ad2ant2lr X V b X c X E X c b X
27 prfi c b Fin
28 27 a1i X V b X c X E X c b Fin
29 acsfn X V E X c b X c b Fin a 𝒫 X | c b a E a ACS X
30 22 23 26 28 29 syl22anc X V b X c X E X a 𝒫 X | c b a E a ACS X
31 30 expr X V b X c X E X a 𝒫 X | c b a E a ACS X
32 31 ralimdva X V b X c X E X c X a 𝒫 X | c b a E a ACS X
33 32 imp X V b X c X E X c X a 𝒫 X | c b a E a ACS X
34 mreriincl ACS X Moore 𝒫 X c X a 𝒫 X | c b a E a ACS X 𝒫 X c X a 𝒫 X | c b a E a ACS X
35 21 33 34 syl2anc X V b X c X E X 𝒫 X c X a 𝒫 X | c b a E a ACS X
36 20 35 eqeltrrid X V b X c X E X a 𝒫 X | c X c b a E a ACS X
37 36 ex X V b X c X E X a 𝒫 X | c X c b a E a ACS X
38 37 ralimdva X V b X c X E X b X a 𝒫 X | c X c b a E a ACS X
39 38 imp X V b X c X E X b X a 𝒫 X | c X c b a E a ACS X
40 mreriincl ACS X Moore 𝒫 X b X a 𝒫 X | c X c b a E a ACS X 𝒫 X b X a 𝒫 X | c X c b a E a ACS X
41 19 39 40 syl2an2r X V b X c X E X 𝒫 X b X a 𝒫 X | c X c b a E a ACS X
42 18 41 eqeltrid X V b X c X E X a 𝒫 X | b a c a E a ACS X