Metamath Proof Explorer


Theorem ralss

Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion ralss ABxAφxBxAφ

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 1 pm4.71rd ABxAxBxA
3 2 imbi1d ABxAφxBxAφ
4 impexp xBxAφxBxAφ
5 3 4 bitrdi ABxAφxBxAφ
6 5 ralbidv2 ABxAφxBxAφ