Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ralss | |- ( A C_ B -> ( A. x e. A ph <-> A. x e. B ( x e. A -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
2 | 1 | pm4.71rd | |- ( A C_ B -> ( x e. A <-> ( x e. B /\ x e. A ) ) ) |
3 | 2 | imbi1d | |- ( A C_ B -> ( ( x e. A -> ph ) <-> ( ( x e. B /\ x e. A ) -> ph ) ) ) |
4 | impexp | |- ( ( ( x e. B /\ x e. A ) -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) |
|
5 | 3 4 | bitrdi | |- ( A C_ B -> ( ( x e. A -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) ) |
6 | 5 | ralbidv2 | |- ( A C_ B -> ( A. x e. A ph <-> A. x e. B ( x e. A -> ph ) ) ) |