| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss | ⊢ ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 2 |  | id | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 3 | 2 | pm4.71rd | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 ) ) ) | 
						
							| 4 | 3 | imbi1d | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝜑 ) ) ) | 
						
							| 5 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝜑 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 6 | 4 5 | bitrdi | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) ) | 
						
							| 7 | 6 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) ) | 
						
							| 8 | 1 7 | sylbi | ⊢ ( 𝐴  ⊆  𝐵  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) ) | 
						
							| 9 |  | albi | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) ) | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 12 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 13 | 10 11 12 | 3bitr4g | ⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) |