Metamath Proof Explorer


Theorem rexss

Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)

Ref Expression
Assertion rexss A B x A φ x B x A φ

Proof

Step Hyp Ref Expression
1 df-ss A B x x A x B
2 pm3.41 x A x B x A φ x B
3 2 pm4.71rd x A x B x A φ x B x A φ
4 3 alexbii x x A x B x x A φ x x B x A φ
5 1 4 sylbi A B x x A φ x x B x A φ
6 df-rex x A φ x x A φ
7 df-rex x B x A φ x x B x A φ
8 5 6 7 3bitr4g A B x A φ x B x A φ