Metamath Proof Explorer


Theorem cntzspan

Description: If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses cntzspan.z Z = Cntz G
cntzspan.k K = mrCls SubMnd G
cntzspan.h H = G 𝑠 K S
Assertion cntzspan G Mnd S Z S H CMnd

Proof

Step Hyp Ref Expression
1 cntzspan.z Z = Cntz G
2 cntzspan.k K = mrCls SubMnd G
3 cntzspan.h H = G 𝑠 K S
4 eqid Base G = Base G
5 4 submacs G Mnd SubMnd G ACS Base G
6 5 adantr G Mnd S Z S SubMnd G ACS Base G
7 6 acsmred G Mnd S Z S SubMnd G Moore Base G
8 simpr G Mnd S Z S S Z S
9 4 1 cntzssv Z S Base G
10 8 9 sstrdi G Mnd S Z S S Base G
11 4 1 cntzsubm G Mnd S Base G Z S SubMnd G
12 10 11 syldan G Mnd S Z S Z S SubMnd G
13 2 mrcsscl SubMnd G Moore Base G S Z S Z S SubMnd G K S Z S
14 7 8 12 13 syl3anc G Mnd S Z S K S Z S
15 7 2 mrcssvd G Mnd S Z S K S Base G
16 4 1 cntzrec K S Base G S Base G K S Z S S Z K S
17 15 10 16 syl2anc G Mnd S Z S K S Z S S Z K S
18 14 17 mpbid G Mnd S Z S S Z K S
19 4 1 cntzsubm G Mnd K S Base G Z K S SubMnd G
20 15 19 syldan G Mnd S Z S Z K S SubMnd G
21 2 mrcsscl SubMnd G Moore Base G S Z K S Z K S SubMnd G K S Z K S
22 7 18 20 21 syl3anc G Mnd S Z S K S Z K S
23 2 mrccl SubMnd G Moore Base G S Base G K S SubMnd G
24 7 10 23 syl2anc G Mnd S Z S K S SubMnd G
25 3 1 submcmn2 K S SubMnd G H CMnd K S Z K S
26 24 25 syl G Mnd S Z S H CMnd K S Z K S
27 22 26 mpbird G Mnd S Z S H CMnd