Metamath Proof Explorer


Theorem cntzssv

Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzrcl.b B=BaseM
cntzrcl.z Z=CntzM
Assertion cntzssv ZSB

Proof

Step Hyp Ref Expression
1 cntzrcl.b B=BaseM
2 cntzrcl.z Z=CntzM
3 0ss B
4 sseq1 ZS=ZSBB
5 3 4 mpbiri ZS=ZSB
6 n0 ZSxxZS
7 1 2 cntzrcl xZSMVSB
8 eqid +M=+M
9 1 8 2 cntzval SBZS=xB|ySx+My=y+Mx
10 7 9 simpl2im xZSZS=xB|ySx+My=y+Mx
11 ssrab2 xB|ySx+My=y+MxB
12 10 11 eqsstrdi xZSZSB
13 12 exlimiv xxZSZSB
14 6 13 sylbi ZSZSB
15 5 14 pm2.61ine ZSB