| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
cntzrcl.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
| 3 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
| 4 |
|
sseq1 |
⊢ ( ( 𝑍 ‘ 𝑆 ) = ∅ → ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) |
| 5 |
3 4
|
mpbiri |
⊢ ( ( 𝑍 ‘ 𝑆 ) = ∅ → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 6 |
|
n0 |
⊢ ( ( 𝑍 ‘ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 7 |
1 2
|
cntzrcl |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 9 |
1 8 2
|
cntzval |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) } ) |
| 10 |
7 9
|
simpl2im |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) } ) |
| 11 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) } ⊆ 𝐵 |
| 12 |
10 11
|
eqsstrdi |
⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 13 |
12
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 14 |
6 13
|
sylbi |
⊢ ( ( 𝑍 ‘ 𝑆 ) ≠ ∅ → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 15 |
5 14
|
pm2.61ine |
⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |