Metamath Proof Explorer


Theorem gsumunsnd

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 2-Jan-2019) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnd.b
|- B = ( Base ` G )
gsumunsnd.p
|- .+ = ( +g ` G )
gsumunsnd.g
|- ( ph -> G e. CMnd )
gsumunsnd.a
|- ( ph -> A e. Fin )
gsumunsnd.f
|- ( ( ph /\ k e. A ) -> X e. B )
gsumunsnd.m
|- ( ph -> M e. V )
gsumunsnd.d
|- ( ph -> -. M e. A )
gsumunsnd.y
|- ( ph -> Y e. B )
gsumunsnd.s
|- ( ( ph /\ k = M ) -> X = Y )
Assertion gsumunsnd
|- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )

Proof

Step Hyp Ref Expression
1 gsumunsnd.b
 |-  B = ( Base ` G )
2 gsumunsnd.p
 |-  .+ = ( +g ` G )
3 gsumunsnd.g
 |-  ( ph -> G e. CMnd )
4 gsumunsnd.a
 |-  ( ph -> A e. Fin )
5 gsumunsnd.f
 |-  ( ( ph /\ k e. A ) -> X e. B )
6 gsumunsnd.m
 |-  ( ph -> M e. V )
7 gsumunsnd.d
 |-  ( ph -> -. M e. A )
8 gsumunsnd.y
 |-  ( ph -> Y e. B )
9 gsumunsnd.s
 |-  ( ( ph /\ k = M ) -> X = Y )
10 nfcv
 |-  F/_ k Y
11 1 2 3 4 5 6 7 8 9 10 gsumunsnfd
 |-  ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )