Metamath Proof Explorer


Theorem gsumunsnfd

Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnd.b B = Base G
gsumunsnd.p + ˙ = + G
gsumunsnd.g φ G CMnd
gsumunsnd.a φ A Fin
gsumunsnd.f φ k A X B
gsumunsnd.m φ M V
gsumunsnd.d φ ¬ M A
gsumunsnd.y φ Y B
gsumunsnd.s φ k = M X = Y
gsumunsnfd.0 _ k Y
Assertion gsumunsnfd φ G k A M X = G k A X + ˙ Y

Proof

Step Hyp Ref Expression
1 gsumunsnd.b B = Base G
2 gsumunsnd.p + ˙ = + G
3 gsumunsnd.g φ G CMnd
4 gsumunsnd.a φ A Fin
5 gsumunsnd.f φ k A X B
6 gsumunsnd.m φ M V
7 gsumunsnd.d φ ¬ M A
8 gsumunsnd.y φ Y B
9 gsumunsnd.s φ k = M X = Y
10 gsumunsnfd.0 _ k Y
11 snfi M Fin
12 unfi A Fin M Fin A M Fin
13 4 11 12 sylancl φ A M Fin
14 elun k A M k A k M
15 elsni k M k = M
16 15 9 sylan2 φ k M X = Y
17 8 adantr φ k M Y B
18 16 17 eqeltrd φ k M X B
19 5 18 jaodan φ k A k M X B
20 14 19 sylan2b φ k A M X B
21 disjsn A M = ¬ M A
22 7 21 sylibr φ A M =
23 eqidd φ A M = A M
24 1 2 3 13 20 22 23 gsummptfidmsplit φ G k A M X = G k A X + ˙ G k M X
25 cmnmnd G CMnd G Mnd
26 3 25 syl φ G Mnd
27 nfv k φ
28 1 26 6 8 9 27 10 gsumsnfd φ G k M X = Y
29 28 oveq2d φ G k A X + ˙ G k M X = G k A X + ˙ Y
30 24 29 eqtrd φ G k A M X = G k A X + ˙ Y