Metamath Proof Explorer


Theorem prdsmulrcl

Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses prdsmulrcl.y Y = S 𝑠 R
prdsmulrcl.b B = Base Y
prdsmulrcl.t · ˙ = Y
prdsmulrcl.s φ S V
prdsmulrcl.i φ I W
prdsmulrcl.r φ R : I Ring
prdsmulrcl.f φ F B
prdsmulrcl.g φ G B
Assertion prdsmulrcl φ F · ˙ G B

Proof

Step Hyp Ref Expression
1 prdsmulrcl.y Y = S 𝑠 R
2 prdsmulrcl.b B = Base Y
3 prdsmulrcl.t · ˙ = Y
4 prdsmulrcl.s φ S V
5 prdsmulrcl.i φ I W
6 prdsmulrcl.r φ R : I Ring
7 prdsmulrcl.f φ F B
8 prdsmulrcl.g φ G B
9 6 ffnd φ R Fn I
10 1 2 4 5 9 7 8 3 prdsmulrval φ F · ˙ G = x I F x R x G x
11 6 ffvelrnda φ x I R x Ring
12 4 adantr φ x I S V
13 5 adantr φ x I I W
14 9 adantr φ x I R Fn I
15 7 adantr φ x I F B
16 simpr φ x I x I
17 1 2 12 13 14 15 16 prdsbasprj φ x I F x Base R x
18 8 adantr φ x I G B
19 1 2 12 13 14 18 16 prdsbasprj φ x I G x Base R x
20 eqid Base R x = Base R x
21 eqid R x = R x
22 20 21 ringcl R x Ring F x Base R x G x Base R x F x R x G x Base R x
23 11 17 19 22 syl3anc φ x I F x R x G x Base R x
24 23 ralrimiva φ x I F x R x G x Base R x
25 1 2 4 5 9 prdsbasmpt φ x I F x R x G x B x I F x R x G x Base R x
26 24 25 mpbird φ x I F x R x G x B
27 10 26 eqeltrd φ F · ˙ G B