Metamath Proof Explorer


Theorem rngidpropd

Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses rngidpropd.1 φB=BaseK
rngidpropd.2 φB=BaseL
rngidpropd.3 φxByBxKy=xLy
Assertion rngidpropd φ1K=1L

Proof

Step Hyp Ref Expression
1 rngidpropd.1 φB=BaseK
2 rngidpropd.2 φB=BaseL
3 rngidpropd.3 φxByBxKy=xLy
4 eqid mulGrpK=mulGrpK
5 eqid BaseK=BaseK
6 4 5 mgpbas BaseK=BasemulGrpK
7 1 6 eqtrdi φB=BasemulGrpK
8 eqid mulGrpL=mulGrpL
9 eqid BaseL=BaseL
10 8 9 mgpbas BaseL=BasemulGrpL
11 2 10 eqtrdi φB=BasemulGrpL
12 eqid K=K
13 4 12 mgpplusg K=+mulGrpK
14 13 oveqi xKy=x+mulGrpKy
15 eqid L=L
16 8 15 mgpplusg L=+mulGrpL
17 16 oveqi xLy=x+mulGrpLy
18 3 14 17 3eqtr3g φxByBx+mulGrpKy=x+mulGrpLy
19 7 11 18 grpidpropd φ0mulGrpK=0mulGrpL
20 eqid 1K=1K
21 4 20 ringidval 1K=0mulGrpK
22 eqid 1L=1L
23 8 22 ringidval 1L=0mulGrpL
24 19 21 23 3eqtr4g φ1K=1L