Metamath Proof Explorer


Theorem ringn0

Description: Rings exist. (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion ringn0 Ring

Proof

Step Hyp Ref Expression
1 vex zV
2 eqid Basendxz+ndxzzzndxzzz=Basendxz+ndxzzzndxzzz
3 2 ring1 zVBasendxz+ndxzzzndxzzzRing
4 ne0i Basendxz+ndxzzzndxzzzRingRing
5 1 3 4 mp2b Ring